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ABSTRACT  
The lecture introduces the basic principles of hydrodynamic lubrication and the fundamental equation of 
Classical Lubrication Theory. The analysis proceeds to derive the static and dynamic performance 
characteristics of short length cylindrical journal bearings, with application to the dynamic forced 
performance of a rigid rotor supported on plain bearings. In a radial bearing, the Sommerfeld number 
defines a relationship between the static load and the journal eccentricity within the bearing. This design 
parameter shows the static performance of the bearing as rotor speed increases. Rotordynamic force 
coefficients are introduced and their effect on the stability of a rotor-bearing system thoroughly discussed. 
Cross-coupled force coefficients are solely due to journal rotation, and the magnitude (and sign) of the 
cross-stiffness determines rotordynamic stability. The whirl frequency ratio (WFR) relates the whirl 
frequency of subsynchronous motion to a threshold speed of instability. The desired WFR is null; however, 
plain cylindrical bearings show a whirl ratio of just 0.50, limiting the operation of rotating machinery to 
shaft speeds below twice the system first critical speed. The analysis concludes with a review of practical 
(in use) journal bearing configurations with highlights on their major advantages and disadvantages, 
including remedies to reduce or entirely avoid subsynchronous whirl instability problems.  

1.0 FUNDAMENTS OF FLUID FILM BEARING ANALYSIS 
Figure 1 depicts an idealized geometry of a fluid film bearing. The major characteristic of a lubricant film, 
and which allows a major simplification of its analysis, is that the thickness of the film (h) is very small 
when compared to its length (L) or to its radius of curvature (R), i.e. (h/L) or (h/R)   <<< 1.  
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Figure 1: Geometry of Flow Region in a Thin Fluid Film Bearing (h << Lx, Lz). 
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A plain cylindrical journal bearing, see Figure 2, comprises of an inner rotating cylinder (journal) of 
radius RJ and an outer cylinder (bearing) of radius RB (>RJ). The two cylinders are closely spaced and the 
annular gap between the two cylinders is filled with some lubricant. The radial clearance c = (RB -RJ) is 
very small. In most fluid film bearings with incompressible liquids, c/RB =0.001; while for gas film 
bearings, C/RB =0.0001, typically.  

DB=2 RB DJ=2 RJ 

 

Figure 2: Schematic View of a Cylindrical Bearing. 

As a consequence of the smallness in film thickness, the effects of the film curvature are negligible in 
the operation of a journal bearing.   

The analysis of the flow equation defines the circumferential flow Reynolds number (Re) as   

µ
ρ cU*Re =  &  Re*=Re (c/L*)          (1a) 

based on the characteristic speed (U*=ΩR). Re denotes the ratio between fluid inertia (advection) forces 
and viscous-shear forces. And, 

µ
ωρ 2

Re c
s =                      (1b) 

is the squeeze film Reynolds number representing  the ratio between temporal fluid inertia forces due to 
transient motions at a characteristics frequency (ω) and viscous-shear forces. Fluid inertia effects in thin 
film flows are of importance only in those applications where both Reynolds numbers are larger than 
ONE1, i.e. Re*, Res >> 1.  

The film thickness to characteristic length ratio (c/L*) in thin film flows is typically very small. Thus, fluid 
inertia terms are to be retained for flows with Reynolds numbers of the order [2]: 

Re  >  (L*/c) x 1  >  1, 000  for  (c/L*) = 0.001     (2) 

Classical lubrication is based on the assumption that fluid inertia effects are negligible, i.e. (Res, Re*) → 0, 
in most practical applications; and hence, rendering effectively an inertialess fluid.   

                                                      
1  In actuality, Re > 12 for steady super laminar flow in thin film bearings, as demonstrated in [1]. In thin film flows, transition to turbulence is 

due to instability of shear driven parallel flow. A transition to turbulence initiated by the appearance of Taylor vortices generated by 
centrifugal forces is more peculiar to configurations with large clearances, i.e. not common in thin film bearings. The accepted Reynolds 
number for flow turbulence in journal bearings is Rec=ρΩRc/µ >2,000 [2]. 
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The thin film laminar flow of an incompressible, inertialess and isoviscous fluid is governed by the 
following equations continuity and momentum transport equations: 
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where vx,y,z are the velocity components and the film pressure (P) is uniform across the film thickness (h). 
The momentum equations establish a quasi-static balance of pressure and viscous forces. The lubrication 
equations denote “slow” flow conditions with time appearing as a parameter, not an independent variable. 

Table 1 presents the circumferential flow Reynolds numbers (Re) for a typical journal bearing application 
operating with different fluids. The example bearing is a 3 inch (76 mm) diameter (2RJ) journal and the 
clearance to radius ratio (c/RJ) is 0.001, a typical value for journal bearings. Two rotational speeds of 
1,000 and 10,000 rpm (Ω=104.7 and 1047 rad/s) are noted in the table. The calculated Reynolds numbers 
(Re) show that bearing applications with mineral oils and (even) air do not need to include fluid inertia 
effects, i.e. Re < 1,000. However, process fluid applications using water, R134a refrigerant and cryogenic 
fluids show large Reynolds numbers at a speed of 10,000 rpm.  

Table 1: Importance of Fluid Inertia Effects on Several Fluid Film  
Bearing Applications (c/RJ )=0.001, RJ =38.1 mm (1.5 inch) 

Fluid 
Absolute 

viscosity (µ) 
lbm.ft.s x 10-5 

Kinematic 
viscosity (ν) 
centistoke 

Re at 1,000 rpm Re at 10,000 rpm 

Air 1.23 15.4 9.9 99 
Thick oil 1,682 30.0 5.1 51 
Light oil 120 2.14 71 711 
Water 64 1.00 159 1,588 

Liquid hydrogen 1.075 0.216 705 7,052 
Liquid oxygen 10.47 0.191 794 7,942 
Liquid nitrogen 13.93 0.179 848 8,477 
R134 refrigerant 13.30 0.163 930 9,296 

Note that current bearing applications using process liquids to replace mineral oils may operate at speeds 
well above 10,000 rpm. Incidentally, the operating speed of cryogenic turbopumps is on the order of 30 – 
70 krpm, and future applications (currently in the works) will operate at speeds close to 200 krpm! 

Incidentally, process gas and liquid seals, isolating regions of high and low pressures in a typical 
compressor or pump, have larger radial clearances than load support fluid film bearings. For example, in 
water neck-ring and interstage seals in pumps, R/C ~ 250, and thus fluid inertia effects are of importance 
even at relatively low rotational speeds (~1,000 rpm and larger). The topic of seals is analyzed in the next 
lecture. 

1.1 Other Fluid Inertia Effects 
Fluid inertia within thin film flow domains can be safely ignored in most conventional (oil lubricated) 
bearing applications. However, fluid inertia effects may also be of great importance at the inlet to the film 
and discharge from the film sections in a typical pad bearing or seal application, see Figure 3. Depending 
on the flow conditions upstream of a sudden contraction or a sudden enlargement, a fraction of the 
dynamic pressure head, typically given as (½ ρ U2), is lost or recovered.  
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∆P ~ ½ ρU2

PP

U U

 

Figure 3: Pressure Drop & Rise at Sudden Changes in Film Thickness. 

Sudden pressure losses are typical at the edges of a pocket in a hydrostatic bearing and at the inlet plane of 
annular pressure seals. The same phenomenon also occurs at the leading edge of a bearing pad in high 
speed tilting pad bearings. A sudden pressure recovery is also quite typical at the discharge section of a 
pressurized annular or labyrinth seal. Note that the importance of fluid inertia effects may be restricted 
only to the inlet and discharge sections, and may not be relevant within the thin film flow domain. 

2.0 REYNOLDS EQUATION AND KINEMATICS OF JOURNAL MOTION 

Lubricated cylindrical bearings are low friction, load bearing supports in rotating machinery. These fluid 
film bearings also introduce viscous damping that aids in reducing the amplitude of vibrations in operating 
machinery. Figure 4 shows a schematic view of a cylindrical bearing. The journal spins with angular speed 
(Ω) and its center (OJ), due to dynamic loads, also describes translational motions within the bearing 
clearance. The bearing or housing is stationary in most applications. Notable exceptions are those of 
floating ring journal bearings and automotive reciprocating engine support rod bearings.  
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Figure 4:  Schematic View of a Cylindrical Journal Bearing.  
Fixed Coordinate Systems (θ,z) and Moving Coordinate System (Θ,z). 

2.1 Reynolds Equation for Journal Bearings 
The smallness of this ratio allows for a Cartesian coordinate (x=RΘ, y, z) to be located on the bearing 
surface (see Figure 4). Then, in Classical Lubrication, Reynolds equation describes the generation of 
hydrodynamic pressure (P) within the bearing. This equation arises from integration of the momentum 
equations (3) across the film thickness and substitution into the continuity equation [2]: 
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in the flow domain {0 ≤ Θ ≤ 2π , -½ L ≤ z ≤ ½ L}, where h(Θ, z, t) is the film thickness, L is the bearing 
axial length, U = ΩRJ is the journal surface speed, and (ρ, µ) denote the lubricant density and viscosity, 
respectively. 



Hydrodynamic Fluid Film Bearings and 
Their Effect on the Stability of Rotating Machinery  

10 - 6 RTO-EN-AVT-143 

The boundary conditions for the hydrodynamic pressure in a plain cylindrical bearing are2: 

a) the pressure is continuous and periodic in the circumferential direction, i.e. 

      P(Θ, z ,t) = P(Θ + 2π, z, t)     (5) 

b) the pressure equals the discharge or atmospheric value (Pa) on the bearing sides, i.e. 

    P(Θ, ½ L  , t) = P(Θ, - ½ L, t) = Pa    (6) 

As a constraint, the hydrodynamic pressure needs to be greater than the liquid cavitation pressure 
everywhere in the flow domain, i.e. 

   P ≥ Pcav    in  0 ≤  Θ ≤  2π ,  - ½ L ≤  z ≤ ½ L    (7) 

Here Pcav represents the lubricant saturation pressure or the ambient pressure needed for release of 
dissolved gases. In practice, no distinction is made between these two values since hydrodynamic film 
pressures could be one to two orders of magnitude larger than the ambient value.  

Consider the journal and bearing to be aligned and the journal center to have an eccentricity displacement 
e (≤ c). The film thickness is 

   )cos(θech +=      (8)  

This formula is accurate for (c/R) ratios as large as 0.10. The film thickness derived assumes rigid bearing 
and journal surfaces, uniform axial and azimuthal clearance and no journal misalignment.  

2.2 Kinematics of Journal Motion 
The journal center OJ is displaced a distance (e) from the bearing center OB . This distance is known as the 
journal eccentricity and may vary with time depending upon the imposed external load on the bearing. 
The journal eccentricity cannot exceed the bearing clearance, otherwise solid contact and potential 
catastrophic failure may occur. The eccentricity components in the (X, Y) fixed coordinate system are: 

eX = e cos(φ);  eY = e sin(φ)          (9) 

where φ is known as the bearing attitude angle, and Θ=θ+φ. Then, the film thickness also equals  

θsinsincos eeech YX =Θ+Θ+=                 (10)  

and  Θ+Θ=
∂
∂

Θ+Θ−=
Θ∂
∂ sincos;cossin YXYX ee

t
heeh

   (11) 

where ( . ) denotes differentiation with respect to time, i.e. )./( t∂∂  

Substitution of the film thickness gradients into Reynolds equation (4) gives the following lubrication 
equation for an incompressible and isoviscous fluid: 

                                                      
2  The simple journal bearing model does not account for feeding holes or axial grooves for supply of the lubricant into the bearing. A more 

detailed discussion on lubricant cavitation and its physical model can be found in [3]. 
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An alternative form of Reynolds equation arises when using the angular coordinate (θ).  This angle starts 
from the location of maximum film thickness. A coordinate system with radial and tangential (r, t) axes is 
conveniently defined with the unit radial vector along the line joining the bearing and journal centers. 

Recall that eX = e cos(φ);  eY = e sin(φ), and 222
YX eee += . 

The journal center velocities in the (X, Y) and (r, t) 
coordinate systems are related by the transformation: 
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Note that φeVeV tr == ,  are the radial and tangential 
components of the journal translational velocity.  From the 
film thickness θcose+= ch , it follows  
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Thus, Reynolds equation (4) for an incompressible and isoviscous fluid is also expressed as 
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Equation (15) is of particular importance since it allows us to realize an important physical phenomenon. 
Consider the journal center to describe circular centered orbits with a fixed amplitude or radius, e. Hence 
de/dt=0. Furthermore, if the frequency of whirl equals to 50% of the rotational speed; 2/Ω=φ ; then the 
right hand side of Eqn. (15) is null; and hence the pressure is zero, P=0 within the bearing film land. 
There is no generation of hydrodynamic pressure, thus resulting in a sudden loss of load support 
capability. The 50% sped whirl phenomenon is the basis of rotordynamic instability, as explained later. 

2.3 Bearing Reaction Forces  
Once the pressure field is obtained, fluid film forces acting on the journal surface, see Figure 5, are 
calculated by integration of the pressure field acting on the journal surface. An equal opposing force acts 
on the bearing as well. The bearing reaction forces are expressed in the fixed (X, Y) coordinate system and 
moving  (r, t) coordinate system as  

e 

r 

OJ 

OB 

φ 

t 

Vr 

Vt 

X 

Y 

Translational velocities of journal center



Hydrodynamic Fluid Film Bearings and 
Their Effect on the Stability of Rotating Machinery  

10 - 8 RTO-EN-AVT-143 

  ( ) dzdRtzP
F
F

L

Y

X Θ⋅







Θ
Θ

Θ=






 ∫∫ sin
cos

,,

2

00

π

     ;  ( ) dzdRtzP
F
F

L

t

r θ
θ
θ

θ

π

⋅







=







 ∫∫ sin
cos

,,

2

00

 (16) 

θ 
P.cosθ 

P.sinθ 

P 

r 

θ 

Θ 

t

X 

Y 

P 

journal 

Ft 

Fr  

Figure 5: Fluid Film Force Acting on Journal Surface. 

The relationship between the fluid film forces in both coordinate systems is given by: 
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The fluid film forces are generic functions of the journal rotational speed (Ω) and the journal center 
translational velocities, i.e. 

( ) 
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,,, φααα eeFeeFF YX ; α = X,Y  or  r, t   (17)  

An analytical solution of Reynolds equation for arbitrary geometry cylindrical bearings is not feasible. 
Most frequently, numerical methods are employed to solve Reynolds equation and to obtain the 
performance characteristics of bearing configurations of particular interest.  

There are analytical solutions to Reynolds equation applicable to two limiting geometries of journal 
bearings. These are known as the infinitely long and infinitely short length journal bearing models [2].  

In the LONG BEARING MODEL, see Figure 6, the length of the bearing is very large, L/D → ∞, and 
consequently the axial flow is effectively very small, i.e. (∂P/∂z) = 0.  
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Figure 6: The Long Bearing Model. 

For large L/D ratios, Reynolds equation reduces to: 
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This bearing model gives accurate results for journal bearings with slenderness ratios (L/D) > 2. Most 
modern bearings in high performance turbomachinery applications have a small L/D ratio, rarely 
exceeding one. Thus, the infinitely long journal bearing model is of limited current interest. Refer to [2] 
for details on the analytical solution of Eqn. (18).  

This is not the case for squeeze film dampers (SFDs), however, since the long bearing model provides a 
very good approximation for tightly sealed dampers even for small L/D ratios [4].  

3.0 STATIC LOAD PERFORMANCE OF SHORT LENGTH BEARINGS 

In this most useful bearing model, see Figure 7, the bearing length is short, L/D→ 0, and consequently the 
circumferential flow is effectively small, i.e. (∂P/∂θ) ≅ 0. For this limiting bearing configuration, 
Reynolds equation reduces to 
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Figure 7: Short Length Bearing Model. 
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The short length bearing model provides (surprisingly) accurate results for plain cylindrical bearings of 
slenderness ratios L/D ≤ 0.50 and for small to moderate values of the journal eccentricity, e≤ 0.75 c [4]. 
The short length bearing model is widely used for quick estimations of journal bearing static and dynamic 
force performance characteristics. Integration of equation (19) leads to the pressure distribution  
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with H=h/c = 1 + ε cos(θ) as the dimensionless film thickness, and ε = e/c is the journal eccentricity ratio;  
[0 ≤ ε ≤  1], ε = 0 means centered operation (typically a condition of no load support), and ε = 1.0 
evidences solid contact of the journal with its bearing.  

No lubricant cavitation will occur if the exit or discharge pressure Pa is well above the liquid cavitation 
pressure. However, if Pa is low, typically ambient conditions at 1 bar, it is almost certain that the bearing 
will cavitate or show air entrainment when the outlet plenum is not flooded with lubricant. The cavitation 
model in the short length bearing simply neglects any predicted negative pressures and equates them to 
zero. This “chop” procedure although theoretically not well justified grasps with some accuracy the actual 
physics [5]. Hence, if Pa = 0, and from equation (21), the pressure field P>0, when cos(θ+α) < 0. Thus, 
P>0 in the circumferential region limited by 

απθθθαππαθπ
−=≤≤=−→≤+≤

2
3

22
3

2 21   (21) 

That is, regardless of the type of journal motion, the region of positive pressure has an extent of π 
(=180°); thus then the infamous π film cavitation model widely used in the literature. 

Fluid film reaction forces on the journal are evaluated by integration of the pressure field acting on the 
journal surface. With Pa = 0, the radial and tangential forces (Fr, Ft) are given by  
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where the J’s are integrals defined in analytical form by Booker [6]. Note that the fluid film forces are 
proportional to the journal center translational velocities ),( φee as well as the journal rotational speed 
(Ω). The reaction forces depend linearly on the fluid viscosity and the bearing radius and grow rapidly 
with the ratio (L/C)3. 

Hydrodynamic journal bearings are designed (and implemented) to support a static load W, hereafter 
aligned with the X axis for convenience, see Figure 8. At the equilibrium condition, denoted by a journal 
center eccentric displacement (e) with an attitude angle (φ), the hydrodynamic bearing generates a reaction 
force balancing the applied external load at the rated rotational speed (Ω).  The equations of static 
equilibrium are 
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Figure 8: Force Equilibrium for Statically Applied Load. 

For static equilibrium, 0,0 == φe ,and θ1 = 0 to θ2 = π. From equation (22), the static radial and tangential 
film reaction forces are  
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Figure 9 depicts the radial and tangential forces for a typical short length bearing. The forces are 
proportional to the lubricant viscosity and rotor surface speed (ΩR), the length (L3), and inversely 
proportional to the radial clearance (c2). Most importantly, the bearing forces grow rapidly (non-linearly) 
with the journal eccentricity (ε=e/c). 
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Figure 9: Radial and Tangential Forces for Short Length Bearing.  
µ=0.019 Pa.s, L=0.05 m, c=0.1 mm, 3, 000 rpm, L/D=0.25. 

The external load (W) is balanced by the fluid film reaction forces. Thus, 

( ) ( )
( )22

2222
2122

1

116
4 ε

επεεµ
−

−+






Ω=+=

c
LLRFFW tr    (25) 



Hydrodynamic Fluid Film Bearings and 
Their Effect on the Stability of Rotating Machinery  

10 - 12 RTO-EN-AVT-143 

and the journal attitude angle φ is obtained from 
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Note that as the journal eccentricity  ε →  0, φ → π /2, while as ε → 1, φ → 0. 

3.1 Design of Hydrodynamic Bearing – Selection of Operating Eccentricity 
In the design of hydrodynamic journal bearings, the bearing static performance characteristics are related 
to a unique dimensionless parameter known as the Sommerfeld Number (S) defined as 
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     (27) 

where N =(Ω/2π)  is the rotational speed in revolutions/sec. In practice, the specific load or pressure is 
known as the ratio of applied load to bearing projected area, i.e. (W/LD). 

In short length journal bearings, a modified Sommerfeld number (σ) is defined and related to (S) by [5, 7]: 
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Substitution of Eqn. (28) into Eqn. (25) relates the modified Sommerfeld number to the equilibrium 
operating journal eccentricity (e), i.e. 
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At a rated operating condition, σ is known since the bearing geometry (R, L, c), rotational speed (Ω), fluid 
viscosity (µ) and applied load (W) are known. Then, equation (29) provides a relationship to determine 
(iteratively) the equilibrium journal eccentricity ratio ε =(e/c) required to generate the fluid film reaction 
force balancing the externally applied load W. 

Figures 10 and 11 depict the modified Sommerfeld number and attitude angle vs. journal eccentricity, 
respectively.  Large Sommerfeld (σ) numbers; i.e. denoting small load, high speed Ω or large lubricant 
viscosity, determine small operating journal eccentricities or nearly centered operation, ε →0, φ→π/2 
(90°). That is, the journal eccentricity vector is nearly orthogonal to the applied load. 
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Figure 10: Modified Sommerfeld (σ) Number versus Journal Eccentricity. 
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Figure 11: Equilibrium Attitude Angle versus Journal Eccentricity. 

Small Sommerfeld (σ) numbers, i.e. denoting large load, low speed Ω or low lubricant viscosity, 
determine large operating journal eccentricities, ε → 1.0, φ→0 (0°). Note that the journal eccentricity 
vector is nearly parallel to the applied load.  

Figure 12 shows the journal displacement within the bearing clearance for different operating conditions. 
The journal eccentricity approaches the clearance for large loads, low shaft speeds or light lubricant 
viscosity, and it is aligned with the load vector. For small loads, high speeds or large lubricant viscosities 
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(large Sommerfeld numbers), the journal travels towards the bearing center and its position is orthogonal 
to the applied load. This peculiar behavior is the source of rotordynamic instability as will be shown 
shortly.  
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Figure 12: Locus of Journal Center for Short Length Bearing. 

4.0 DYNAMICS OF A RIGID ROTOR SUPPORTED ON SHORT LENGTH 
BEARINGS 

Figure 13 depicts a symmetric rigid rotor of mass 2M, and supporting a static load (2Fo=W) along the X 
axis. The rotor is mounted on two identical plain hydrodynamic journal bearings. The equations of motion 
of the rotating system at constant rotational speed (Ω) are given by [5]: 
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+ΩΩ+=
                   (30) 

where u is the magnitude of the imbalance vector, X(t) and Y(t) are the coordinates of the rotor mass 
center, and (FX, FY)are the fluid film bearing reaction forces. Since the rotor is rigid, the center of mass 
displacements are identical to those of the journal bearings, i.e. )()(),()( tetYtetX YX ==   
    

Low load, high speed, 
large viscosity 
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Figure 13: Rigid Rotor Supported on Journal Bearings.  
(u) Imbalance, (e) Journal Eccentricity. 

We are interested on the rotor dynamic behaviour for small amplitude motions about the equilibrium 
position defined by: 

OOYXYoX eeeFFF
OOOO

φ,or,,0, ⇒=−=     (31) 

where (eo ,φo) denote the static equilibrium journal eccentricity and attitude angle, 
respectively. The bearing static reaction forces satisfy 
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Small amplitude journal motions about the equilibrium position, as represented in 
Figure 14, are defined as:  
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Figure 14: Small Amplitude Journal Motions about an Equilibrium Position. 

The journal dynamic displacements in the (r, t) coordinate system are related to those in the (X, Y) system 
by the linear transformation 
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    (34)  

Similar relationships hold for the journal center velocities and accelerations. Note that the assumption of 
small amplitude motions requires cee YX <<∆∆ , , i.e., the journal dynamic displacements are smaller 
than the bearing clearance.  

Recall that the fluid film forces are general functions of the journal center displacements and velocities, 
i.e. YXteteteteFF YXYX ,)],(),(),(),([ == ααα .  Now, express the bearing reaction forces as a 
Taylor Series expansion around the static journal position (eXo, eYo), i.e. 
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4.1 Definition of Dynamic Force Coefficients in Fluid Film Bearings 
Fluid film bearing stiffness (Kij) ij=X,Y and damping (Cij) ij=X,Y force coefficients are defined as 
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∂
∂

−=  i, j=X,Y    (36) 

For example, KXY = -∂FX/∂Y corresponds to a stiffness produced by a fluid force in the X direction due to a 
journal static displacement in the Y direction. By definition, this coefficient is evaluated at the equilibrium 
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position with other journal center displacements and velocities set to zero. The negative sign in the 
definition ensures that a positive magnitude stiffness coefficient corresponds to a restorative force.  

The force coefficients (KXX, KYY) are known as the direct stiffness terms, while (KXY, KYX) are referred as 
cross-coupled. Figure 15 provides a pictorial representation of the bearing force coefficients as mechanical 
parameters.  
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journal 
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Kxy, Cxy 

Kyx, Cyx 

Kyy 
Cyy Kij = - ∆Fi/∆Xj 

 

Cij = - ∆Fi/(∆Xj/δt) 
 

 

Figure 15: The “Physical Representation” of Stiffness and  
Damping Coefficients in Lubricated Bearings. 

Inertia or added mass coefficients {Mij}ij=X,Y can also be defined as ;
j

i
ij X

F
M

∂
∂

−=  i,j=X,Y where { }YX ,  are 

journal center accelerations. Inertia coefficients are of particular importance in super laminar and turbulent 
flow fluid film bearings and annular seals. The inertia force coefficients or apparent masses have a sound 
physical interpretation. These coefficients are always present in a fluid film bearing. Inertia coefficients 
can be of large magnitude, in particular for dense liquids. However, the effect of inertia forces on the 
dynamic response of rotor-bearing systems is only of importance at large excitation frequencies, i.e. high 
squeeze film Reynolds numbers. (This fact also holds for most mechanical systems subjected to fast 
transient motions). 

With the given definitions, the bearing reaction forces are represented as  












∆

∆








−








∆
∆









−












=









Y
X

CC
CC

Y
X

KK
KK

F

F

tF
tF

YYYX

XYXX

YYYX

XYXX

Y

X

Y

X

O

O

)(
)(

  (37) 

where FXo = Fo=½W and FYo = 0. Note that the defined force coefficients allow the representation of the 
dynamic fluid film bearing (or seal) forces in terms of the fundamental mechanical parameters {K, C, and 
M}. However, this does not mean that these force coefficients must be accordance with accepted “physics 
grounded” knowledge. For example, the “viscous” damping coefficients may be negative, i.e. non-
dissipative, or the stiffness coefficients non-restorative.  

From Eqn. (30), the linear equations for small amplitude motions of the rotor-bearing system are 
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The literature presents the force coefficients in dimensionless form according to the definition: 

00

;
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cCc
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cKk ijijijij

Ω
==  i,j=X,Y    (39) 

where Fo is the static load applied on each bearing (along the X direction). [Note that the total static load 
W=2Fo is shared by the two bearings in a symmetric rotor mount]. 

Lund [8] derived first the analytical formulas for the short bearing force coefficients. Figures 16 and 17 
depict the dimensionless force coefficients, stiffness and damping, as functions of the journal eccentricity 
and of the modified Sommerfeld number (σ), respectively. In the figures, both representations are 
necessary since at times the journal eccentricity is known a priori; while most often, the design parameter, 
i.e. the Sommerfeld number, is known in advance. In general, the physical magnitude of the stiffness and 
damping coefficients increases rapidly (nonlinearly) as the journal eccentricity increases.  
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Figure 16: Dimensionless Stiffness and Damping Coefficients  
vs. Journal Eccentricity (ε) for Short Journal Bearing. 
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Figure 17: Dimensionless Stiffness and Damping Coefficients  
vs. Sommerfeld Number (σ) for Short Journal Bearing. 
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Note that the dimensionless force coefficients do not represent the actual physical trends. For example, at 
eo=0, KXX=KYY=0, but the dimensionless kXX=kYY have non zero value. This peculiarity follows from the 
definition of dimensionless force coefficients using the applied load (Fo). Recall that, as eo→0, the static 
load Fo is also naught. 

4.2 Dynamic Force Coefficients for Journal Centered Operation, i.e. No Applied Load 
As the journal center approaches the bearing center, eo→0, φo = 90o, and from the formulas presented,  
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Thus, at the centered journal position a hydrodynamic bearing offers no direct (support) stiffness but only 
cross-coupled forces. A small load applied on the bearing will cause a journal displacement in a direction 
orthogonal (transverse) to the load, as shown in the schematic view below. This behaviour is common to 
all fluid film journal bearings of rigid geometry. 
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5.0 ROTORDYNAMIC STABILITY OF RIGID ROTOR SUPPORTED ON 
SHORT LENGTH BEARINGS 

The linearized equations of motion are written in dimensionless form as [5, 9] 
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is a dimensionless mass, and  kij and 

cij are the dimensionless stiffness and damping force coefficients. 

It is of interest to determine if the rotor-bearing system is stable for small amplitude journal center 
motions (perturbations) about the equilibrium position. To this end, set the imbalance parameter δ  = 0 in 
the equations above to obtain, 
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If the rotor-bearing system is to become unstable, this will occur at a threshold speed of rotation (Ωs) 
and the rotor will perform (undamped)3 orbital motions at a whirl frequency (ωs). These motions, 
satisfying equation (42), are of the form: 

1;; −===== jeBeByeAeAx jtjjtj ss τωωτωω    (43)  

where ss Ωωω = is known as the whirl frequency ratio, i.e. the ratio of the rotor whirl or precessional  
frequency to the rotor onset speed of instability. Substitution of (43) into equation (42) leads to [5]: 
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In Eqn. (44), the determinant ∆, must be zero for a non-trivial solution of the homogenous system. After 
algebraic manipulation, the real and imaginary parts of ∆ render [5,9] 
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5.1 Threshold Speed, Critical Mass, Equivalent Stiffness and Whirl Frequency Ratio 
For a given value of journal eccentricity (εo), i.e. a given Sommerfeld number (σ ), one evaluates Eqn. 
(45) to obtain the equivalent stiffness keq, and then Eqn. (46) to get the whirl frequency ratio Sω . This 
substitution then yields 22

Seqs kp ω=  (~critical mass), which in turn renders the onset speed of 
instability Ωs. 

Figures 18 and 19 depict the whirl frequency ratio (ω/Ω)s and the dimensionless threshold speed of 
instability (ps) versus equilibrium journal eccentricity and modified Sommerfeld number, respectively. 
Note that for near centered journal operation, i.e. large Sommerfeld numbers, the whirl frequency is 0.50, 
i.e. half-synchronous whirl.  

                                                      
3 Recall that in a mechanical system, an equivalent damping ratio > 0 causes the attenuation of motions induced by small 

perturbations from an equilibrium position. A null damping ratio brings the system into sustained periodic motions without 
decay or growth, thus denoting the threshold between stability and instability (amplitude growing motions).   



Hydrodynamic Fluid Film Bearings and 
Their Effect on the Stability of Rotating Machinery 

RTO-EN-AVT-143 10 - 23 

0.01 0.1 1 10
0

0.5

1
Whirl frequency ratio

Modified Sommerfeld number

W
hi

rl 
fr

eq
ue

nc
y 

ra
tio

0 0.2 0.4 0.6 0.8 1
0

0.5

1
Whirl frequency ratio

journal eccentricity (ratio)

W
hi

rl 
fr

eq
ue

nc
y 

ra
tio

high speed                                                                                             low speed
small load  <---                                                                         --->         large load
large viscosity                                                                                         small viscosity  

Figure 18: Whirl Frequency Ratio vs. Sommerfeld Number (σ) and Journal Eccentricity (ε). 
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Figure 19: Threshold Speed of Instability (ps) vs. Sommerfeld  
Number (σ) and Journal Eccentricity (ε). 

On the other hand, if one assumes that the current rotational speed (Ω) is the onset speed of instability, 
then from the relations above it follows the largest magnitude of ½ system mass (M) to make the rotor-
bearing system unstable. This mass is known as the critical mass, Mc, and corresponds to the limit mass 
which the system can carry dynamically. If the rotor mass is equal to or larger than twice Mc, then the 
system will become unstable at the rated speed Ω  4. 

The whirl frequency ratio (WFR), ss Ωω , is the ratio of the rotor whirl frequency to the onset speed of 
instability. Note that this ratio, as given in equation (46), depends only on the fluid film bearing 
                                                      

4 Recall that each bearing carries half the static load, and also half the dynamic or inertia load (2.McC Ω2). 

unstable

unstable
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characteristics and the equilibrium eccentricity.  The WFR is independent of the rotor characteristics (rotor 
mass and flexibility) [5]. Reference [10] presents an analysis including fluid inertia effects, more 
applicable to annular pressure seals and bearings handling process fluids of large density. 

The parameter keq is a journal bearing (dimensionless) equivalent stiffness, also depicted in Figures 16 and 
17. From the definitions of threshold speed and whirl ratio, ( )oss FCMp 22 Ω=  and sss Ωωω = , then 

eq
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=2ω       (47) 

Thus, the whirl or precessional frequency is  

n
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ωω ==      (48) 

i.e., the whirl frequency equals the natural frequency of the rigid rotor supported on journal bearings. 

For operation close to the concentric position, εo → 0, i.e. large Sommerfeld numbers (no load condition), 
the force coefficients are, see equation (40),  
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This value of whirl frequency ratio (WFR) is a characteristic of hydrodynamic plain journal bearings. The 
WFR shows that at the onset sped of instability the rotor whirls at its natural frequency equal to 50% of the 
threshold rotational speed. Furthermore, under no externally applied loads, Fo=0, as in vertically 
turbomachinery, the bearing possesses no support stiffness, i.e. Keq=0 and the system natural frequency 
(ωn) is zero, i.e. the rotor-bearing system must whirl at all operating speeds.  

Note that if KXY = 0, i.e. the bearing does not have cross-coupled effects, then the WFR = 0, i.e. no whirl 
occurs and the system is always dynamically stable. Cross-coupled effects are then responsible for the 
instabilities so commonly observed in rotors mounted on journal bearings. If the whirl frequency ratio is 
0.50, then the maximum rotational speed that the rotor-bearing system can attain is just, 

ns
s ωω

ω
Ω 22

50.0max ===     (51) 

i.e., twice the natural frequency (or observed rigid rotor critical speed). 

Figures 18, 19 and 20 depict the whirl frequency ratio, the dimensionless threshold speed (ps) and the 
critical mass (ps)2  versus the Sommerfeld number and equilibrium journal eccentricity. The results 
demonstrate that a rigid-rotor supported on plain journal bearings is STABLE for journal eccentricity 
ratios ε > 0.75 (small Sommerfeld numbers) for all L/D ratios. Note that the critical mass and whirl 
frequency ratio are nearly invariant for operation with journal eccentricities (εo) below 0.50. 
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Figure 20: Critical Mass (mc=ps

2) vs. Sommerfeld Number (σ) and Journal Eccentricity (ε). 

Keep in mind that increasing the rotational speed of the rotor-bearing system determines larger 
Sommerfeld numbers, and consequently, operation at smaller journal eccentricities for the same applied 
static load. Thus, operation at ever increasing speeds will eventually lead to a rotor dynamically unstable 
system as the analysis results show. 

5.2 Effects of Rotor Flexibility on Stability of System 
A similar analysis can be performed considering rotor flexibility [5, 11]. This analysis is more laborious 
though straightforward. The analysis shows that rotor flexibility does not affect the whirl frequency ratio. 
However, the onset speed of instability is dramatically reduced since the natural frequency of the rotor-
bearing system is much lower. The relationship for the threshold speed of instability of a flexible rotor is: 
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where the sub index  f  denotes a flexible rotor. Krot is the rotor stiffness on each side of the mid disk 
shown in the graph, and roto KFT = is the rotor static sag or elastic deformation at midspan. 

The elastic shaft and bearing are mounted in series, i.e. the bearing and shaft flexibilities add (reciprocal of 
stiffnesses), and thus the equivalent system stiffness is lower than that of the bearings, and therefore the 
system natural frequency decreases significantly.  

Figure 21 depicts the threshold speed of instability (psf) for a flexible rotor mounted on plain short length 
journal bearings. Note that the more flexible the rotor is, the lower the threshold speed of instability. If the 
fluid film bearings are designed too stiff (low Sommerfeld numbers), then the natural frequency of the 
rotor-bearing system is just (Krot/M)1/2, irrespective of the bearing configuration. 
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Figure 21: Threshold Speed of Instability (ps) for Flexible Rotor  
versus Sommerfeld Number (σ). Static Sag (Γ/c) Varies. 

5.3 Physical Interpretation of Dynamic Forces for Circular Centered Whirl  
The bearing dynamic forces in the radial and tangential are  

bearing 
2M Krot 

unstable
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Consider circular journal motions of amplitude ∆e at a forward frequency (ω), as shown in Figure 22.  At 
the centered position, the bearing has no direct stiffnesses, only cross-coupled stiffness and direct 
damping, i.e.  
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Ft= -(Cttω + Ktr) ∆e 
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Fr= -(Crtω + Krr) ∆e  
∆e

 

Figure 22: Force Diagram for Circular Centered Whirl Motions. 

And thus, the radial and tangential forces become 

eKCFF rttttr dd
∆−−== )(;0 ω    (55) 

A destabilizing force will drive the journal in the direction of the forward whirl motion, i.e. Ft>0 if the 
equivalent damping (Ceq) is negative (see Figure 23), i.e.    

0)1( <=− eqrttt CKC
ω     (56) 
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Figure 23: Forces Driving and Retarding Rotor Whirl Motion. 

At the threshold speed of instability, ttrt CK
2
Ω

= . Thus, unstable forward whirl motions occur for rotor 

speeds Ω ≥ 2ωs.  

In the (X,Y) coordinate system, ∆X=∆e cos(ωt) and ∆Y=∆e sin(ωt). Thus, the bearing dynamic forces 
become 
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Note that (FX , FY) oppose the forward whirl motion for journal speeds Ω < 2ωs. For larger rotor speeds, 
the bearing forces become positive and aid to the growth of the forward whirl amplitude of motion, as 
shown graphically in Figure 24. 
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Figure 24: Representation of Follower Force from Cross-Coupled Stiffnesses. 

The work performed by the bearing forces during a full orbital period (T=2π/ω) equals [9] 
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Note that E<0 is equivalent to negative work, i.e. energy removed or dissipated from the rotor-bearing 
system. However when E>0, i.e. for Ω ≥ 2ωs, the fluid film bearing adds "energy" into the rotor-bearing 
system thus driving the whirl motion forward.  

From this discussion one can easily deduce that rotor-bearings evidencing whirl orbits with skewed areas 
(sharp ellipsoids) will be less prone to rotordynamic instability, see Figure 25. This type of dynamic 
response is obtained by design and construction of a bearing generating (direct) stiffness asymmetry, as 
given in multiple pad bearing configurations (elliptic, multiple-lobe with preloads, pressure-dam 
bearings). However, these bearings are limited to fixed orientation static loads and rotor spin in only one 
direction.  
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Figure 25: Influence of Bearing Asymmetry on Whirl Orbits. 

5.4 Experimental Measurements of Rotor-Bearing System Instability 
The archival literature is abundant in experimental and field descriptions of severe instabilities induced by 
fluid film bearings on rotating machinery. As an example of tests conducted at the author’s laboratory on a 
high speed test rig, Figure 26 depicts recorded amplitudes of motion versus shaft speed in a rigid rotor 
supported on plain journal bearings. The displacement measurements correspond to rotor motions along 
the vertical and horizontal planes (LV, LH). The curves with larger amplitudes denote the total amplitudes 
of motion while the others in light color show the filtered synchronous (1X) motions with slow roll 
compensation. The passage through a well-damped critical speed is evident at ~ 8.5 krpm. As the shaft 
speed increases, the amplitudes of motion decrease. However, at a shaft speed ~ twice the critical speed, 
the rotor becomes violently unstable with large amplitude motions nearly equalling the bearings’ 
clearances.  

 

Figure 26: Amplitudes of Rotor Motion versus Shaft Speed.  
Experimental Evidence of Rotordynamic Instability. 
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Figure 27 depicts the waterfall of the vertical shaft motion. The graph shows the frequency content of the 
vibration signal as the rotor accelerates. The synchronous motions are denoted by the 1X line. The whirl 
frequency ratio is 0.50 at the onset of the severe subsynchronous motions. As the speed increases, the 
whirl frequency locks at the system natural frequency. This phenomenon is known as oil-whip. The rotor 
was severely damaged upon completion of the experiment. 

 
Figure 27: Waterfall of Recorded Rotor Motion Demonstrating Subsynchronous Whirl. 

6.0 CLOSURE 

Compressors, turbines, pumps, electric motors, electric generators and other rotating machines are 
commonly supported on fluid film bearings. In the past, most applications implemented common 
cylindrical plain journal bearings. As machines have achieved higher speeds and larger power, rotor 
dynamic instability problems such as oil whirl have brought the need to implement other bearing 
configurations. Cutting axial grooves in the bearing to supply oil flow into the lubricated surfaces 
generates some of these geometries. Other bearing types have various patterns of variable clearance 
(preload and offset) to create a pad film thickness that has strongly converging and diverging regions, thus 
generating a direct stiffness for operation even at the journal centered position. Various other geometries 
have evolved as well, such as the tilting pad bearing, which allows each pad to pivot, and thus to take its 
own equilibrium position. This feature usually results in a strongly converging film region for each loaded 
pad and the near absence of cross-coupled stiffness coefficients. 

Tables 2 and 3 summarize some of the advantages and disadvantages of various bearings in condensed 
form. Figure 28 shows graphical sketches for some of the bearing configurations below. References [12, 
13, 14] offer important technical information on the design, operation and stability considerations for the 
most common fluid film bearings used in industrial applications, with emphasis in pumps and 
compressors. 
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Table 2: Fixed Pad Non-Pre Loaded Journal Bearings 

Bearing Type        Advantages                 Disadvantages             Comments                        

Plain Journal 
 

1. Easy to make 
2. Low Cost 

1. Most prone to oil whirl 
 

Round bearings are nearly 
always “crushed” to make 
elliptical bearings 

Partial Arc 1. Easy to make 
2. Low Cost 
3. Low horsepower loss 

1. Poor vibration resistance 
2. Oil supply not easily 

contained 

Bearing used only on 
rather old machines 
 

Axial Groove 1. Easy to make 
2. Low Cost 

1. Subject to oil whirl Round bearings are nearly 
always “crushed” to make 
elliptical or multi-lobe 

Floating Ring 1. Relatively easy to make 
2. Low Cost 

1. Subject to oil whirl (two whirl 
frequencies from inner and 
outer films (50% shaft speed, 
50% [shaft + ring] speeds) 

Used primarily on high 
speed turbochargers for 
PV and CV engines  

Elliptical 1. Easy to make 
2. Low Cost 
3. Good damping at critical 

speeds 

1. Subject to oil whirl at high 
speeds 

2. Load direction must be known 

Probably most widely used 
bearing at low or moderate 
rotor speeds 

Offset Half  
(With 
Horizontal Split) 

1. Excellent suppression of 
whirl at high speeds 

2. Low Cost 
3. Easy to make 

1. Fair suppression of whirl at 
moderate speeds 

2. Load direction must be known 

High horizontal stiffness 
and low vertical stiffness - 
may become popular - 
used outside U.S. 

Three and Four 
Lobe 

1. Good suppression of whirl 
2. Overall good performance 
3. Moderate cost 

1. Expensive to make properly 
2. Subject to whirl at high speeds 

Currently used by some 
manufacturers as a 
standard bearing design 
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Table 3: Pad Journal Bearings with Steps, Dams or Pockets, Tilting Pad Bearing 

Bearing Type Advantages Disadvantages Comments 
Pressure Dam 
(Single Dam) 

1.  Good suppression of whirl 
2.  Low cost 
3. Good damping at critical 

speeds 
4.  Easy to make 

1.  Goes unstable with little 
warning 

2.  Dam may be subject to wear or   
build up over time 

3.  Load direction must be known 

Very popular in the 
petrochemical industry.  
Easy to convert elliptical 
over  to pressure dam 

Multi-Dam 
Axial Groove or 
Multiple-Lobe 

1.  Dams are relatively easy to 
place in existing bearings 

2.  Good suppression of whirl 
3.  Relatively low cost  
4.  Good overall performance 

1.  Complex bearing requiring 
detailed analysis 

2.  May not suppress whirl due to 
non bearing causes 

Used as standard design by 
some manufacturers 

Hydrostatic 1. Good suppression of oil 
whirl 

2. Wide range of design 
parameters 

3.  Moderate cost 

1.  Poor damping at critical speeds 
2.  Requires careful design 
3.  Requires high pressure 

lubricant supply 

Generally high stiffness 
properties used for high 
precision rotors 

NON-FIXED PAD JOURNAL BEARINGS 

Bearing Type Advantages Disadvantages Comments 

Tilting Pad 
Journal Bearing 
 
Flexure Pivot, 
Tilting Pad 
Bearing 

1. Will not cause whirl  
(no cross coupling) 

1. High Cost 
2. Requires careful design 
3. Poor damping at critical 

speeds 
4. Hard to determine actual 

clearances 
5. Load direction must be known  

Widely used bearing to 
stabilize machines with 
subsynchronous non-
bearing related excitations 

Foil Bearing 1. Tolerance to misalignment. 
2. Oil-free 
 

1. High cost 
2. Dynamic performance not 

well known for heavily loaded 
machinery 

3. Prone to subsynchronous 
whirl 

Used mainly for low load 
support on high speed 
machinery (APU units) 
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Figure 28: Schematic Views of Various Radial Fluid Film Bearing Configurations. 

REFERENCES 

[1] Turbulence in Fluid Film Bearings, L. San Andrés, Lecture Notes (#8) in Modern Lubrication, 
http://phn.tamu.edu/TRIBGroup, 2002.  

[2] Tribology – Friction, Lubrication & Wear, A. Szeri, Hemisphere Pubs, 1980.  

http://phn.tamu.edu/TRIBGroup


Hydrodynamic Fluid Film Bearings and 
Their Effect on the Stability of Rotating Machinery  

10 - 36 RTO-EN-AVT-143 

[3] Cavitation in Liquid Film Bearings, L. San Andrés, Lecture Notes (#6) in Modern Lubrication, 
http://phn.tamu.edu/TRIBGroup, 2002.  

[4] Effect of Fluid Inertia on Finite Length Sealed Squeeze Film Dampers, L. San Andrés & J.M. Vance, 
ASLE Transactions, 30, 3, pp. 384-393, 1987. 

[5] Turbomachinery Rotordynamics, (chapter 3), D. Childs, John Wiley & Sons, Inc., 1993. 

[6] A Table of the Journal Bearing Integrals, J.F. Booker, ASME Journal of Basic Engineering, pp. 533-
535, 1965.  

[7] Rotordynamics of Turbomachinery, J.M. Vance, J., Wiley Inter-Science Pubs., 1988. 

[8] Self-Excited, Stationary Whirl Orbits of a Journal in a Sleeve Bearing, J. Lund, Ph.D. Thesis, 
Rensselaer Polytechnic Institute, Troy, N.Y., 1966. 

[9] Dynamics of Simple Rotor-Fluid Film Bearing System, L. San Andrés, Lecture Notes (#5) in 
Modern Lubrication, http://phn.tamu.edu/TRIBGroup, 2002.  

[10] Effect of Eccentricity on the Force Response of a Hybrid Bearing, L. San Andrés, STLE Tribology 
Transactions, 34, 4, pp. 537- 544, 1991. 

[11] The Stability of an Elastic Rotor in Journal Bearings with Flexible Supports, J, Lund, ASME Journal 
of Applied Mechanics, pp. 911-920, 1965. 

[12] Design of Journal Bearings for Rotating Machinery, P. Allaire & R.D. Flack, Proc. of the 10th 
Turbomachinery Symposium, TAMU, pp. 25-45, 1981. 

[13] Fluid Film Bearing Fundamentals and Failure, F. Zeidan & B. Herbage, Proc. of the 20th 
Turbomachinery Symposium, TAMU, pp. 161-186. 1991. 

[14] Fundamentals of Fluid Film Journal Bearing Operation and Modeling, M. He & J. Byrne, Proc. of 
the 34th Turbomachinery Symposium, TAMU, pp. 155-176, 2005. 

http://phn.tamu.edu/TRIBGroup
http://phn.tamu.edu/TRIBGroup

